The use of measure functions for evaluating classifier
نویسنده
چکیده
Evaluation of classifier performance is often based on statistical methods e.g. cross-validation tests. In these tests performance is often strongly related to or solely based on the accuracy of the classifier on a limited set of instances. The use of measure functions has been suggested as a promising approach to deal with this limitation. However, no usable implementation of a measure function has yet been presented. This article presents such an implementation and demonstrates its usage through a set of experiments. The results indicate that there are cases for which measure functions may be able to capture important aspects of the evaluated classifier that cannot be captured by crossvalidation tests. Index TermsClassifier performance, cross-validation, data mining, evaluation, machine learning
منابع مشابه
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملA reverse logistics chain mathematical model for a sustainable production system of perishable goods based on demand optimization
Sustainability in the supply chain means pushing the supply chain to focus on social, economic and environmental aspects, and addressing the existing problems in the traditional supply chain. Considering the importance of evaluating supply chain networks, especially in the field of perishable commodities, this paper aimed to design a mathematical model for the reverse supply chain of perishable...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملOn the use of Heronian means in a similarity classifier
This paper introduces new similarity classifiers using the Heronian mean, and the generalized Heronian mean operators. We examine the use of these operators at the aggregation step within the similarity classifier. The similarity classifier was earlier studied with other operators, in particular with an arithmetic mean, generalized mean, OWA operators, and many more. The two classifiers here ar...
متن کامل